Chapter 10 Circles

- 10.1 Lines and Segments That Intersect Circles
- 10.2 Finding Arc Measures
- 10.3 Using Chords
- 10.4 Inscribed Angles and Polygons
- **10.5 Angle Relationships in Circles**
- 10.6 Segment Relationships in Circles
- 10.7 Circles in the Coordinate Plane

Theorem

Tangent and	If a tangent and a chord intersect at a point on
Intersected Chord	a circle, then the measure of each angle formed
Theorem	is one-half the measure of its intercepted arc.

 $m \angle 1 = \frac{1}{2}m\overline{AB}$

 $m \angle 2 = \frac{1}{2}mBCA$

Examples

a) Solve for $\angle 1$

b) Solve for \widehat{mKJL}

10.5 Angle Relationships in Circles Intersecting Lines and Circles

 If two nonparallel lines intersect a circle, there are three places where the lines can intersect.

Theorem

	If two chords intersect inside a circle, then the
Angles Inside the Circle	measure of each angle is one-half the sum of
Theorem	the measures of the arcs intercepted by the
	angle and its vertical angle.

Theorem

Angles Outside the Circle Theorem If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one-half the difference of the measures of the intercepted arcs.

Examples

Calculate x.

Theorem

 $m \angle ADB = 180^{\circ} - m \angle ACB$

Examples

Calculate x.

